http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113257671-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2257-80
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2253-202
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2253-106
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D53-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D53-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-31116
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-31144
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D53-261
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D53-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-311
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D53-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D53-26
filingDate 2021-07-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2021-10-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2021-10-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-113257671-B
titleOfInvention Semiconductor device etching method using high-purity electronic grade hexafluorobutadiene
abstract The invention relates to the field of semiconductor devices, and discloses a semiconductor device etching method using high-purity electronic grade hexafluorobutadiene, which comprises the following steps: grafting a polyacrylamide cross-linked network onto the pore wall of the C-type silica gel to prepare water absorption response type silica gel; sequentially carrying out absorption responsive silica gel adsorption impurity removal, light component rectification and heavy component rectification on the raw material gas of the hexafluorobutadiene to obtain high-purity electronic grade hexafluorobutadiene; an insulating layer is formed on a semiconductor substrate, a patterned mask layer is formed on the insulating layer, an etching gas containing high-purity electron-grade hexafluorobutadiene is made into plasma, and then the insulating layer is dry-etched by the plasma. The water absorption response type silica gel adopted by the invention can utilize the water absorption swelling characteristic of the crosslinking network in the pores to ensure that the water absorption rate is higher in the initial stage and the later stage of the adsorption, thereby reducing the water content in the high-purity electronic-grade hexafluorobutadiene and preventing the influence on the performance of a semiconductor device after the etching.
priorityDate 2021-07-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419572542
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6579
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559289
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546727
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6432
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419517548
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID69636
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6393
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456922693
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458357694
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1140
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523852
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID69654
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID520309
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419519694
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID422220268
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419522015
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID18196
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8028
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426099666
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID88685
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419553602
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5461123
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10290728
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559541
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414844308
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID83756
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6336883
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23968
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415785619
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8471
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415743364
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62652
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3084099
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419514448
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523906
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426453095
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6431
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8041

Total number of triples: 66.