http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113212798-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_551d69b7b7251b44ee02af7ecdd72304
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B64G1-105
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B64G1-66
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B64G1-58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B64G1-1021
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B64G1-58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B64G1-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B64G1-66
filingDate 2021-04-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_80581c04ea876c9be00c5f548ebac11a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d631fbcd1f0741342477b44d1d706733
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_78f217c283c1f6b2674565082affc7c9
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_252c10304d57c6c37555c7fdeac12aee
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_94e5e6f5c50236fff4f0d6e49fe0dd81
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_cf7bfd9a82eaad361262ac299d2dd2ee
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_081d7f0fa4c65d72052552f6505bcfa2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a2390c1f41854edb9cfd456212d73488
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_316cfd20eca725e5e24afcc55ecd5b7f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d4b81054d251565ca0036ea47dd2ea4d
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0b79b6fdd99b2234881bf5d0fd29bdef
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4b40d33e3b5803818807fb2296f02913
publicationDate 2021-08-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-113212798-A
titleOfInvention A design method of load thermal control system for all-sky monitoring high-energy telescope
abstract The invention discloses a design method for a load thermal control system for an all-sky monitoring high-energy telescope. The effective load includes a dome cabin and an electronics cabin. The dome cabin is provided with 25 GRD detectors and 6 CPD detectors, and the electronics cabin is provided with 25 GRD detectors and 6 CPD detectors. There are two CPD detectors, and the thermal control system design method includes the following steps: S1. Perform external heat flow analysis, and based on the external heat flow analysis, determine the heat dissipation surface of the entire payload, the dome cabin and the electronics cabin; S2. Independent thermal design with the electronics cabin, and thermal insulation installation for the dome cabin and the electronics cabin; S3. Set up active thermal control electric heaters at the corresponding positions of the payload for heating compensation; S4. For important thermal control products Adopt redundant design and degraded design, and design the maintainability of thermal control products; S5. Establish a reliability mathematical model and conduct reliability analysis on thermal control products; S6. Based on the reliability analysis results of thermal control products, conduct thermal Control system reliability distribution.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115520410-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115520410-A
priorityDate 2021-04-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5884868-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2019023427-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458431511
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419514599
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577369
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID83563
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5460467

Total number of triples: 37.