http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113176315-B

Outgoing Links

Predicate Object
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-49
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-3272
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-49
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-327
filingDate 2021-03-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2023-01-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2023-01-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-113176315-B
titleOfInvention A NiO/Au nanotube array flexible electrode with core-shell structure and its application
abstract The invention discloses a NiO/Au nanotube array flexible electrode with a core-shell structure and an application thereof. The NiO/Au nanotube array flexible electrode with a core-shell structure of the present invention has an inner core layer of Au nanotubes and an outer shell layer of NiO nanotubes. The invention uses ZnO as a template for nanotube arrays, and deposits flexible NiO/Au nanotube array electrodes with a core-shell structure on the surface of carbon cloth by electrodeposition. The flexible NiO/Au nanotube array electrode with core-shell structure prepared by the present invention can use the noble metal Au in the core layer to increase the conductivity of NiO in the shell layer, thereby improving its ability to oxidize glucose; the synergistic effect of Au and NiO on glucose oxidation The effect can significantly improve the glucose sensing performance of the composite electrode; in addition, the use of NiO can also greatly reduce the use of noble metal Au, thereby reducing the production cost of the electrode.
priorityDate 2021-03-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2013024660-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419508054
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450181837
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451326926
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23939
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449391796
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5793
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3007855
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450542361
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451518796
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24518
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID57448911
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14798
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458431511
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449957047
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24586
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24424
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5460490
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25736
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID935
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549332
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24385
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412550040
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409060395
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449188861

Total number of triples: 39.