http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113063732-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_bf53daf46ede52ed581c8fe8e7188669
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-552
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-84
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-552
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-84
filingDate 2021-03-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_67b28e262dbf5f884fad7febdc5a81aa
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_79e626a903cfefdda6c669e24c0d0e39
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5fa38a9e03af370471ecc5d466e1d157
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d898e4dafa75a0b25acbff84a4b7fde7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_408b3d31eeb0eef8a22e767a5f21dbdd
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_930710ce51bf5bf13251f09f1cdccf28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a345cae713db0c8d447c296dad36fa23
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_72e0a32b16007a283114f0184a4e5187
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f784caac7c5db17a8af6cbb309fde246
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_da83867c4d32689bb89ffd23994b4045
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e02bc16a7e21f285cd3893a5e3127e67
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_bee1d3e0ab785f6d8ebc746e6fe33cfb
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_acffb61901e2ddd6d5aeef05e35206f9
publicationDate 2021-07-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-113063732-A
titleOfInvention In-situ detection device and method for solar absorption ratio in vacuum and low temperature environment
abstract The application provides an in-situ detection device and method for solar absorption ratio in a vacuum and low temperature environment, wherein the in-situ detection device comprises a vacuum and low temperature test tank, and a detection probe installed in the vacuum and low temperature test tank is arranged outside the vacuum and low temperature test tank and is connected with the vacuum and low temperature test tank. The control host to which the detection probe is electrically connected; the detection probe includes: an integrating sphere and a processing module; the bottom of the integrating sphere is provided with a detection hole; the top of the inner wall of the integrating sphere is provided with a detector and a light source that can generate multiple wavelength bands; the detector is configured to obtain integration The optical signal reflected by the inner wall of the ball is converted into an electrical signal; the input end of the processing module is connected to the output end of the detector, and the output end of the processing module is connected to the control host through a cable; the processing module is configured to output radiance A t (λ) ; The control host is used to calculate and output the solar absorption ratio α. Through the above structure, the loss of luminous flux caused by the derivation of the optical signal is avoided in the detection process, and the in-situ, accurate and fast detection can be realized.
priorityDate 2021-03-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452927767
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419582621
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14792
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID60825
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491805
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24414

Total number of triples: 33.