http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113015423-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_653c418e41edbb4e1ce8bc5e53e70cec
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-82
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-72
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-03
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B21-0622
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H05K9-0081
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B22F9-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B22F1-054
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B22F1-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H05K9-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B21-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B22F9-20
filingDate 2021-02-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6b07137790b4f80a9fbdec524d553598
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_47cecb36bb0e7d47c1a7080ea5f4107a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_78a4ac37e1f73b748bdbcb19f121377b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_779a61cd5823713fbff7c4446045db79
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ada4e547f5c33d142277ffe37daf89c6
publicationDate 2021-06-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-113015423-A
titleOfInvention A Fe/Fe4N/Fe3O4-rGO nanomaterial with high electromagnetic wave absorption performance, preparation method and application
abstract The invention provides a Fe/Fe 4 N/Fe 3 O 4 -rGO nanomaterial with high electromagnetic wave absorption performance, a preparation method and application. In the present invention, Fe 3 O 4 nanoparticles are first prepared by a co-precipitation method, then dispersed in an aqueous dispersion of graphene oxide (GO), soaked in an aqueous solution of hypophosphorous acid and urea, and then freeze-dried and calcined at high temperature to obtain Fe/ Fe 4 N/Fe 3 O 4 ‑rGO multi-component hybrid nanomaterials. The method of the invention has the advantages of reasonable design, simple process, low cost of synthetic raw materials, safety and environmental protection; the obtained nanomaterials have controllable morphology and uniform size distribution; are applied to electromagnetic wave absorbing materials, have high electromagnetic wave absorption performance in the low frequency band, and have wide wave absorption at the same time. It has excellent effects such as frequency band, and meets the comprehensive requirements of "thin", "broad", "light" and "strong" for modern absorbing materials, and has a wide application prospect.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114071982-A
priorityDate 2021-02-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411653120
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457766247
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24826
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14025
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1176
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24393
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452506218
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID413832638
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419483880
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449697443
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID76004
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID408686767
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22497
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6516
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14456
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID76419415
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447773061
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID17318
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453327643
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14923
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419596818
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID420380674

Total number of triples: 57.