http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112980824-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_873d6a6fc681644d2da216c5a3a8f2f8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d113027089608e8db37890ba62dfd28f
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N9-90
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Y501-03
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12R1-125
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12R1-19
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12R1-685
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12R1-84
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N9-90
filingDate 2019-12-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3c4dd70ee8d1d16ed4b4019deb9e6da8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f32fc70250b3f629c55c701e31740e54
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3d1205f743c9c3d5ebe0016df010725c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_23ed596c585af3f63a7af1c43bb13ee3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_579874091fb5f6d4b4b5771f1f761025
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4bf202f8d9582e3e3a3db6b81caebadc
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_93b3785d5250c577ef93049c9aed725a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a124bfdcb79e245b8fea4a08b1d24532
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4ef7b0e8fac4c17e3421be64fd653201
publicationDate 2021-06-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-112980824-A
titleOfInvention A rapid optimization method based on heterologous expression of enzymes in different microbial cell factories
abstract The invention relates to the field of microbial engineering, in particular to a method for optimizing the heterologous expression of enzymes in a microbial cell factory. The method includes: by designing a programmed experiment method, respectively measuring the expression level of the enzyme and the growth level of the microbial cell factory under different external environmental factors , and take the highest enzyme expression level as the enzyme reference level and the highest microbial cell factory growth level as the cell reference level; select the enzyme expression level to reach at least 90% of the enzyme reference level and the microbial cell factory growth level to reach at least 70% of the cell reference level The conditions at % are optimized for heterologous expression of enzymes in microbial cell factories. The method provided by the invention has the advantages of comprehensively considering the expression characteristics of the enzyme and the growth characteristics of the host cells, and determining a qualitative and quantitative production expression method, which can realize the rapid jump from strain construction to biocatalysis process.
priorityDate 2019-12-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4922
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP36914
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA9CH28
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID5061
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID562
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP23176
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4922
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1423
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1423
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP0DN29
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID232714
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO74254
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07683
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474392
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID51453
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP22861
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP08017
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID358
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID5061
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP22832
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCD8Q9M3
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCB8I944
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP14804
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP04065
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID8972
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA8RG82
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4932
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID562
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP26989
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ03045
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1718
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1718
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4932
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP69327
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID51453
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP69328
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP08019
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCC0HJE2
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100148922
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID90008
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29761
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP42042
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID358
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO60087
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29760

Total number of triples: 70.