http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112814876-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2205-0134
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2227-0381
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2227-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2260-023
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2203-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2203-012
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2203-0626
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2227-0157
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2201-0109
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2221-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2223-0123
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2225-0123
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C2260-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-16
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C1-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01K25-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01D15-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17D1-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F04B41-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17D3-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F04B39-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C5-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C7-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C13-002
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17C1-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F04B35-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F17D1-07
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01K27-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F17C7-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F17D1-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F17C1-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F17C1-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F01K25-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F17C13-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F17D1-07
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F04B39-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F04B41-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F01D15-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F17D3-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F04B35-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F01K27-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F17C5-06
filingDate 2021-01-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2022-03-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2022-03-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-112814876-B
titleOfInvention Compressed air energy storage system and method capable of achieving self-temperature equalization and air storage
abstract The embodiment of the invention provides a compressed air energy storage system and method capable of achieving self-temperature equalization and air storage, and relates to the technical field of air energy storage. The system comprises a multi-stage self-temperature-equalizing gas storage unit, wherein the multi-stage self-temperature-equalizing gas storage unit comprises a plurality of self-temperature-equalizing gas storage tanks; the self-temperature-equalizing gas storage tank comprises an outer tank, an inner tank, annular temperature-equalizing heat pipes and phase-change materials, wherein the inner tank is arranged inside the outer tank, the annular temperature-equalizing heat pipes are arranged between the outer tank and the inner tank at intervals and are attached to the outer peripheral surface of the inner tank, liquid absorption cores are arranged on the inner surfaces of the annular temperature-equalizing heat pipes, working media are arranged in the liquid absorption cores, the working media are used for absorbing heat, evaporating, condensing and releasing heat, and the phase-change materials are arranged between the outer tank and the inner tank and between two adjacent annular temperature-equalizing heat pipes; the self-temperature-equalizing air storage tank can increase the energy storage density of the system in the energy storage process, ensure the acting capacity of the system in the energy release process, maintain the stable and efficient operation of the system and improve the power generation efficiency of the system.
priorityDate 2021-01-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-0994290-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4192144-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23978
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID418354341

Total number of triples: 56.