http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112552373-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_4dfa8c44ed51ec69206b4de6ebdf75b3
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C07K5-06026
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07K1-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07K5-062
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07K1-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07K1-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07K1-30
filingDate 2020-12-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7435d32663f1cce625c0d7cae9b7714a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9f258e3543e972dbfcf5d4756250d700
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_66863c6e22b263f59fdfc272df5e9020
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9b97e5a813804ddab82f5b20de6a9541
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2efc53b2a5fb5381ab42c1fec904ef5f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_acefe253e9eb0049499d5ae85089047b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0a6e0aef2ca13624a02dfef01c1b1680
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_eed55d9e640b30d6b1f323d30b170b12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ca090c5d39c856e054965ed490b15bd7
publicationDate 2021-03-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-112552373-A
titleOfInvention A kind of industrialized preparation method of glycyl-L-tyrosine
abstract The invention relates to an industrialized preparation method of glycyl-L-tyrosine, belonging to the technical field of medicine and chemical industry. First, chloroacetyl chloride and L-tyrosine are subjected to an acylation reaction under low temperature and alkaline conditions, and after phase separation Obtain N-chloroacetyl-L-tyrosine aqueous solution, then adopt electrodialysis method to process this aqueous solution, feed ammonia gas into the aqueous solution obtained by the treatment to carry out under-pressure ammonolysis, and obtain glycine through concentration, crystallization, filtration and drying Acyl-L-tyrosine crude product; finally, glycyl-L-tyrosine crude product is dissolved in water, purified with WA-30 resin, and crystallized to obtain high-purity glycyl-L-tyrosine. The invention adopts the electrodialysis membrane separation technology, and combines with WA-30 resin purification to improve the yield and quality of the product, simplify the process steps, realize the one-pot method to prepare the crude dipeptide, generate less industrial three wastes, and the process operation is simple and convenient , suitable for large-scale industrial production, the product quality is good, and can meet the requirements of injection-grade raw materials.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113880911-A
priorityDate 2020-12-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12968959
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1118
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557048
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID15561435
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID71432026
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415747923
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419490115
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID679
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419484026
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID123913
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1140
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID413311725
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415824629
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID86608491
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14798
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419550829
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558806
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID92829
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID13387
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID222
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID70841
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538066
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456922693
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID428411213
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454441728
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6577
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID256410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412584819
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2724332
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448917988
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6228
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419514216
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415791931
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416150276
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415907465
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409060395
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6057

Total number of triples: 66.