http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112420994-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9d435ff921a801919c8e200e28523c4b
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M2004-028
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M2004-021
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-625
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-628
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-136
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-1397
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-5825
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-136
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-1397
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-0525
filingDate 2020-11-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_cea7e7aa54086dfe15c3a04cb624f258
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_920b0e2ae3c5567ccf922a687f504fdc
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e533106aa9e0cad7fb34880caba48a2b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6b88cdf1b951cd2619d00d8ac94ef431
publicationDate 2021-02-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-112420994-A
titleOfInvention High-rate lithium iron phosphate lithium ion battery positive plate and preparation method thereof
abstract The invention relates to the technical field of positive electrode materials, in particular to a high-rate lithium iron phosphate lithium ion battery positive electrode plate and a preparation method thereof. According to the invention, carbon fiber powder is coated on two sides of a lithium iron phosphate/carbon fiber layer after being respectively subjected to melamine modification and phosphoric acid modification, and is used as an artificial SEI film to pre-coat the lithium iron phosphate layer, and the lithium iron phosphate layer is self-assembled and fixed in an electrolyte system, so that the composite cathode material with the porous carbon fiber framework loaded with the artificial SEI @ lithium iron phosphate is formed. The carbon fiber powder self-assembled skeleton has certain lithium intercalation capacity, can be used as an inorganic layer in an SEI film, has higher lithium ion conduction capacity, can effectively relieve the overgrowth of the SEI film in a formation process, and reduces the loss of irreversible capacity. According to the invention, the artificial SEI organic phase is pre-coated on the lithium iron phosphate particles, so that the first effect and the rate capability of the anode material can be effectively improved. The process is simple and controllable, and is suitable for large-scale industrial production.
priorityDate 2020-11-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID516875
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1004
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451101097
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23677815
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447735963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491870
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449015670
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID159745657
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28486
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458357694
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457556906
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23688915
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID15320824
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24832095
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3028194
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450532805
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453530231
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24402
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23968
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419537701
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426260389
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411550722
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7955
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559587
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451316045

Total number of triples: 56.