http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112326624-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_653c418e41edbb4e1ce8bc5e53e70cec
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-658
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-65
filingDate 2020-10-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_76fd98c035359cc7f11f775388728418
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e3a1f61fe2f83eeed20ae8a46f3201c2
publicationDate 2021-02-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-112326624-A
titleOfInvention Application of Doped Two-dimensional Semiconductor Nanomaterials in Surface Raman Scattering Enhancement
abstract The invention relates to the technical field of Raman spectroscopy molecular detection materials, in particular to the application of a doped two-dimensional semiconductor nanomaterial as a surface Raman scattering-enhancing active substrate. In view of the relatively low sensitivity of the surface-enhanced Raman scattering of semiconductor material substrates in the prior art, the present invention provides an application of doped two-dimensional semiconductor nanomaterials as surface Raman scattering-enhancing active substrates. Sulfur-doped two-dimensional layered tin selenide nanosheets were directly generated on the substrate. The nanosheet has good signal enhancement effect in surface enhanced Raman spectroscopy, high detection sensitivity, simple and controllable preparation method, large detection range, and no reaction with probe molecules.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113292042-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113296176-A
priorityDate 2020-10-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID402
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23968
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426105649
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24631
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID447916
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559526
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419554679
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5455
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419513011
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559218
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID448378
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458357694
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419517535
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453524733
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6326970
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID432787922
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID235227
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6432049

Total number of triples: 36.