http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111948266-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02A20-20
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-333
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C16-27
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C16-27
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-333
filingDate 2020-08-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2022-03-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2022-03-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-111948266-B
titleOfInvention Self-supporting boron-doped diamond electrochemical sensor and preparation method
abstract The invention provides a self-supporting boron-doped diamond electrochemical sensor, a preparation method and application. The preparation method of the self-supporting boron-doped diamond electrochemical sensor includes the following steps: 1) using nano-diamond powder as a seed crystal seed material, uniformly spreading it on the surface of the pretreated metal substrate, and mechanically grinding to obtain a seed crystal seeded material. metal substrate; 2) the metal substrate after the seed crystal is coated with hot wire chemical vapor deposition technology; wherein, in the diamond nucleation stage, methane is used as the carbon source, and hydrogen is used as the etching gas; in the diamond growth stage , using ethanol as the carbon source and trimethyl borate as the boron source; 3) packaging after stripping, that is, it is obtained. The self-supporting boron-doped diamond electrochemical sensor provided by the invention can meet the precise and long-term detection requirements for the sensor proposed by the online monitoring system, effectively overcome the short working life of the BDD thin film sensor, and has the advantages of online monitoring of heavy metal ions in water, especially Application potential of Pb 2+ .
priorityDate 2020-08-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419525958
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26250
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453109387
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419405613
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559585
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16683880
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23978
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419537701
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID455728551
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24956
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450864287
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23932
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419527289
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23954
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID167571
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5462311
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546339
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8470
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID418354341
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557109

Total number of triples: 45.