http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111804162-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ed25364954a481cb37b9ac3588fc51f3
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2325-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2325-36
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D67-0079
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D71-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D71-68
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-105
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D71-027
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D71-024
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D61-027
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D71-68
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D71-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D71-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D61-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D69-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D69-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D69-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D67-00
filingDate 2020-07-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4e19bf542a8f2f004f1345964dbb26a8
publicationDate 2020-10-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-111804162-A
titleOfInvention A kind of preparation method of high flux polytetrafluoroethylene composite nanofiltration membrane
abstract The invention relates to the technical field of membrane filtration, and discloses a preparation method of a high-flux polytetrafluoroethylene composite nanofiltration membrane. The method includes the following steps: S1, using sodium alginate to activate and modify the hydrophobic polytetrafluoroethylene microporous membrane to obtain a hydrophilic polytetrafluoroethylene microporous membrane; S2, using a silane coupling agent to perform surface modification treatment on the quartz glass fiber ; S3, grafting trihydroxy quaternary ammonium salt to the surface of the quartz glass fiber to obtain the modified quartz glass fiber; S4, depositing the modified quartz glass fiber on the hydrophilic polytetrafluoroethylene microporous membrane by the static adsorption method to form the fiber mesh to obtain a pretreated polytetrafluoroethylene microporous membrane; S5, coating the surface of the pretreated polytetrafluoroethylene microporous membrane with a polyethersulfone casting solution and drying to form a membrane. In the process of preparing the polytetrafluoroethylene composite nanofiltration membrane, the method can avoid the blockage of the membrane pores caused by the penetration of macromolecular organic substances through the cracks on the surface of the polytetrafluoroethylene microporous membrane, thereby improving the performance of the polytetrafluoroethylene composite nanofiltration membrane. water flux.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-116589681-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-116589681-A
priorityDate 2020-07-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419484319
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26042
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3485
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419537701
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520497
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8019
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450984220
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6342
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID155622
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415855601
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419485535
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7835
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559029
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559502
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707770
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID338
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419527900
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7902
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557048
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419487010
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5102882

Total number of triples: 60.