http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111798427-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_be2c55a9de09e08e3404c0a5a1ae4dc7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a3e9438c2a1373794888bf3bd4f16807
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-30204
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-30096
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-30092
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-20084
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-20081
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T7-90
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F16-51
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T7-0012
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T7-11
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-045
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T7-11
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T7-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T7-90
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F16-51
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N3-04
filingDate 2020-06-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_571b36845e56d00abdc5577770b30e36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_cb0bb9de0fc4d46160c7c0904896416a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b28fb699bb9cda3351990a80d8d248e2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_bda9629add05315bb0e86b694d3bc9f7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_783422408e9467f2dc774716fd261671
publicationDate 2020-10-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-111798427-A
titleOfInvention A transfer learning-based mitotic detection system in gastrointestinal stromal tumors
abstract A system for detecting mitoses in gastrointestinal stromal tumors based on transfer learning: preprocessing pathological slice image data; constructing a pretrained full convolutional neural network, including encoder sub-network and decoder sub-network; selecting Adam to optimize The pre-trained fully convolutional neural network is updated by the gradient controller, and the Focal Loss loss function is used to train the pre-trained fully convolutional neural network; 3) The decoder sub-network weights in the pre-trained fully trained fully convolutional neural network are calculated. After initialization, a new fully convolutional neural network is obtained, the Adam optimizer is selected to update the gradient of the fully convolutional neural network, and the Focal Loss loss function is used to train the fully convolutional neural network; A good fully convolutional neural network is tested to obtain a binary map of the mitotic region. The present invention can provide effective intermediate data for pathologists to detect mitotic images, and realize rapid judgment of patient's condition.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113327233-A
priorityDate 2020-06-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID86598188
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450235101

Total number of triples: 32.