http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111735803-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_041b065fa9b66f236ccaf364401acb95
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2021-6417
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2021-6432
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K2211-1088
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K11-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K11-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K11-646
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-33
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-3577
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-643
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K11-779
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C09K11-64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-3577
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-33
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C09K11-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C09K11-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C09K11-85
filingDate 2020-06-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_66f4add9091eabbe25fab4d84146397e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ba9bd95c762bfd369747799d229d8fe7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1edf009c2eaecb9a4d3422f34239ee6c
publicationDate 2020-10-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-111735803-A
titleOfInvention Construction and Application of Nanoporous Materials Fluorescence Resonance Energy Transfer System
abstract The invention discloses the construction and application of a nanometer microporous material fluorescence resonance energy transfer system. In the invention, halloysite and rhodamine B are used as raw materials to prepare rhodamine B modified halloysite strong fluorescent material KH550-HNTs-g-RhB as an energy acceptor, rare earth doped nanocrystals are used as energy donors, and a combination of KH550‑HNTs‑g‑RhB and nanocrystals were modified by m-aminophenylboronic acid and glucose, respectively. The spectra and ion recognition behaviors of the above products were characterized by various spectrometers, and a fluorescence resonance energy transfer system for the concentration detection of glucose solution was established. The results showed that an efficient fluorescence resonance energy transfer system was formed between the KH550-HNTs-g-RhB modified with m-aminophenylboronic acid and the glucose-modified LaF 3 :Ce 3+ -Eu 3+ nanocrystals, and the concentration of glucose was significantly different from that of 580 nm. The fluorescence intensity of KH550‑HNTs‑g‑RhB showed a good linear relationship, the linear equation was y=‑5.08723x+314.47105, and the fitting degree was R 2 =0.9975, which effectively realized the recognition of glucose molecules.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114354582-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114275759-A
priorityDate 2020-06-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2012130209-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013029333-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-102070734-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419489359
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID417430547
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24386
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419484319
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID312
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419508054
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7419
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID107526
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451954015
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415777542
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409002015
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450017637
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID92269
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448942573
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22998653
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419489898
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5793
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID83675
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6694
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID174
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559517
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25122
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419525298

Total number of triples: 61.