http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111659251-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_53b4d53983adbf56dd0e7d0bf96f8ce5
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-12
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D53-8625
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J29-85
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B37-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B39-54
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D53-86
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B37-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J29-85
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D53-56
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B39-54
filingDate 2020-05-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9922f7f6279bb2bcff3cad51463976b7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d559c39d6f957ae2ef3eec1959cf149e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_cf6ea95b3f8e26d305444daea11a3856
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_69570c3df2d353e57b126c495314ae86
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c3e175a13de17c23aa7c18d67833c897
publicationDate 2020-09-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-111659251-A
titleOfInvention Low-cost hierarchical porous SAPO-34 molecular sieve and its preparation method and application
abstract The invention discloses a low-cost multi-level porous SAPO-34 molecular sieve, a preparation method and application thereof, and belongs to the technical field of molecular sieve synthesis. The invention uses lithium silicon powder waste as a raw material, and provides a preparation method of SAPO-34 molecular sieve, which includes: acid washing, drying and sieving of lithium silicon powder to obtain powder; mixing water and phosphorus source uniformly to obtain Phosphorus source solution; mix powder and phosphorus source solution, add template agent, and mix evenly to obtain a mixed solution; after the mixed solution is aged at room temperature, the temperature is raised for hydrothermal crystallization to obtain a crystallized solution; the crystallized solution is cooled and washed , filtration, drying and calcination to obtain SAPO-34 molecular sieve. The present invention utilizes the waste slag lithium silicon powder piled up in large quantities at present, and at the same time, by controlling the amount of each material and optimizing the synthesis conditions, the SAPO-34 molecular sieve has a micro-intermediate multi-level pore structure, and effectively solves the drawback of a single micro-pore structure. , and it can be used as a carrier material for low-temperature denitration catalysts.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113371728-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112354358-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113371728-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112844447-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114534703-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114534703-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112409316-A
priorityDate 2020-05-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110451518-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4091
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451818717
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419497074
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10176082
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419553602
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID159282
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1118
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453841255
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411550722
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559059
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6509
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454637486
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8021
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412584819
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450664886
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID107908
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559357
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID166597
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559532
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8471
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546960
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8083
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453694953
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491804
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID944
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9989226
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24404
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557048
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448218712
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5359268
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453924777
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID45051571
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520471
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1004
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID73425445

Total number of triples: 70.