http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111392766-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_bbcfef648ec8fbdc2eca4b4b40ea2da2
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-72
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-64
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-184
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G23-005
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G23-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B32-184
filingDate 2019-11-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_bef75a797157948c402c4eb30a306ae4
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e917830beafa9547fa70b07512b6e802
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8887e21e7d6e77d287e43c0ed9344f04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ab2d4b3b3d35793e47e9a28fc4a273c6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ffcc5b031d49996ddb7adc04ad60154f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_50f8fa2fa1b762bd1a428a74c8f0f14f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4f3516a2d717e8fef91acff3556749ea
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2cafa69944875696b835415d33279a0f
publicationDate 2020-07-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-111392766-A
titleOfInvention A kind of method for preparing nanometer lithium titanate/graphene porous composite electrode material
abstract The invention relates to a method for preparing nanometer lithium titanate/graphene porous composite electrode material. The method directly mixes graphite oxide, titanium source and lithium source by ball milling, so that the titanium source and lithium source are inserted between the layers of graphite oxide, and nano-lithium titanate precursor particles are formed in situ under the action of interlayer functional groups, and the interlayer spacing is enlarged to The interaction force between layers is weakened, then the graphite oxide is peeled off by ball milling, and finally the nano-lithium titanate/graphene porous composite electrode material is obtained by high temperature sintering. The method uses graphite oxide dry powder instead of graphene oxide suspension as raw material, avoids the disadvantages of poor consistency and low concentration of graphene oxide suspension, and belongs to the solid-phase preparation process, has good repeatability, and has potential industrial application value. The nano-lithium titanate/graphene porous composite material synthesized by this method has excellent high rate performance, and still has a capacity of nearly 100mAh g -1 at a rate of 100C, reaching the international advanced level.
priorityDate 2019-11-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458357694
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3028194
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID110612
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6093646
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449100580
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453940457
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419548916
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID76524
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID887
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID176
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11125
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518430
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23968
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454228257
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID21801
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26188
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3474584
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453918477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24193
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID263
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411932836
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559587
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449308810
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425836335
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450013893
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419485854
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID406903350
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1031
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456987945
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970

Total number of triples: 68.