http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111048761-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_b706fea9c41f47030ef796dced8a43b8
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-362
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-625
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-628
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-054
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-5815
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-054
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-62
filingDate 2019-12-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_47e10715ef536b6e5c2e1a3f065743ac
publicationDate 2020-04-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-111048761-A
titleOfInvention Li-P modified carbon nanotube-sulfide aluminum-based battery positive electrode material and preparation method thereof
abstract The invention relates to the technical field of aluminum-based battery anode materials, and discloses a Li-P modified carbon nanotube-sulfide aluminum-based battery anode material and a preparation method thereof, wherein the Li-P modified carbon nanotube-sulfide aluminum-based battery anode material comprises the following formula raw materials: Li-P modified carbon nanotube, thiourea and Na 2 MoO 4 、CoCl 2 And sodium dodecyl benzene sulfonate. According to the Li-P modified carbon nanotube-sulfide aluminum-based battery cathode material and the preparation method thereof, the S-doped carbon nanotube forms a porous carbon structure with a high specific surface, a large number of active sites are provided for electrochemical reaction, the Li modification increases the interlayer spacing of the carbon nanotube, and the formed layered structure and porous structure reduce the electrostatic effect between aluminum ions and the cathode material, improve the electrostatic effect between the aluminum ions and the cathode material, and improve the yield of the lithium-P modified carbon nanotube-sulfide aluminum-based battery cathode materialThe method has the advantages that the de-intercalation rate of aluminum ions is increased, the conductivity of the anode material is improved by the carbon nano tube, and the sulfide material is loaded into the porous structure of the layered carbon nano tube, so that elastic buffer is provided for volume expansion and contraction generated in the charge and discharge processes of sulfide, and the rate capability of the anode material is enhanced.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113903600-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113903600-A
priorityDate 2019-12-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419487106
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1118
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61028
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451429851
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID559740
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491804
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416010594
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID57371080
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8058
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452890905
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453612601
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID102446
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61424
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8028
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8000
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457703603
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412584819
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5359268
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456922693
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450459896
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1140
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449210251
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524343
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID66666
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546714
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14367694
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2723790
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID421471511

Total number of triples: 55.