http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110791797-B

Outgoing Links

Predicate Object
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C18-405
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C28-321
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C18-1844
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C22-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C28-345
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D11-026
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D5-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D11-30
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C28-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C18-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D11-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C18-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C22-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D5-10
filingDate 2019-10-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2021-08-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2021-08-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-110791797-B
titleOfInvention High-corrosion-resistance conductive protection method for magnesium-lithium alloy and corresponding part
abstract The invention relates to a high-corrosion-resistance conductive protection method for a magnesium-lithium alloy. The colloid palladium one-step method sensitization-activation treatment and reduction treatment adopted in the method break through the key bottleneck that a magnesium-lithium alloy (brand LZ91) micro-arc oxidation film is easy to dissolve and difficult to plate, and successfully obtains a metal coating with good binding force on the magnesium-lithium alloy (brand LZ91) micro-arc oxidation film. The surface of the magnesium-lithium alloy (the trademark LZ91) composite protective layer consisting of the micro-arc oxidation film (inner layer) and the metal coating (outer layer) is conductive and firmly combined with the matrix, and no phenomena such as foaming or layering and the like occur between the protective layer and the matrix after a thermal shock test at 200 ℃; the composite protective layer has excellent corrosion resistance, and the protective grade Rp of the composite protective layer reaches 9 grades after a 192-hour acid salt spray test. The invention can be used for the conductive and high-corrosion-resistance composite protection treatment of the magnesium-lithium alloy (with the trade name of LZ91) workpiece in severe environment. The method provided by the invention is suitable for automatic mass production and high in production efficiency.
priorityDate 2019-10-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23673604
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419554224
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448924711
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448670727
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8062
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5284466
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID712
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23978
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8759
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6049
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5235
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451331637
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID418354341
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5234
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412550040
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454515022
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419567053
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577792
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23938
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14798
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2723790
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559485
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558592
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451289241
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID935
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451908603
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61436
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425901710
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24290
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447740608
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23266
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID141233
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546034
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447669256
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID29131
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546714
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409060395

Total number of triples: 59.