http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110358137-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J2201-0484
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J2379-02
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-0066
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-28
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08L79-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08K3-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08J9-28
filingDate 2019-07-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2022-03-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2022-03-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-110358137-B
titleOfInvention Preparation method of graphene/polyaniline composite xerogel with porous network structure
abstract A preparation method of a graphene/polyaniline composite xerogel with a porous network structure relates to a preparation method of a nano composite energy storage xerogel, and comprises the steps of Graphene Oxide (GO) preparation, cross-linked polyaniline conductive slurry (gel) preparation and high-strength graphene/polyaniline composite xerogel with a three-dimensional porous network structure: directly mixing polyaniline conductive slurry with GO dispersion liquid to prepare composite slurry blended by GO and polyaniline slurry to obtain graphene/polyaniline composite hydrogel, repeatedly soaking the obtained graphene/polyaniline composite hydrogel in hot alcohol and water for dialysis until the solution is colorless, and freeze-drying to obtain the high-strength graphene/polyaniline xerogel with the three-dimensional porous network structure. The xerogel prepared by the method has the characteristics of good conductivity, high specific capacitance, good electrochemical cycle stability, high mechanical strength, easily obtained raw materials, simple preparation process and low cost. The method has positive influence on the development of novel supercapacitor electrode materials, and simultaneously, the high-strength porous structure lays a research foundation for the development of all-solid-state supercapacitors in the future.
priorityDate 2019-07-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-101861356-B1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452434431
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID890
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6115
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62648
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419479687
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409431953

Total number of triples: 28.