http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-109835948-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02P20-129
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02P20-10
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G49-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M8-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G31-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G37-04
filingDate 2017-11-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-04-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2020-04-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-109835948-B
titleOfInvention System and method for producing high-purity energy storage material for flow battery by using high-chromium vanadium slag
abstract The invention discloses a system and a method for producing a high-purity energy storage material for a flow battery by using high-chromium vanadium slag. Vanadium, chromium and iron in the high-chromium type vanadium slag are converted into corresponding gaseous chlorides through selective chlorination by the circulating fluidized bed, most of impurities such as manganese, titanium, silicon and the like in the vanadium slag are left in chlorination residues, and separation of valuable elements and other impurities is realized. The gaseous chloride is subjected to high-temperature dust collection to separate crude chromium trichloride, medium-temperature dust collection to separate crude ferric trichloride and low-temperature leaching to separate crude vanadium oxychloride. Volatilizing and purifying the crude chromium trichloride to obtain high-purity chromium trichloride; volatilizing and purifying the crude ferric trichloride to obtain high-purity ferric trichloride; and rectifying, purifying and catalytically oxidizing the crude vanadium oxychloride to obtain high-purity vanadium pentoxide powder. The invention realizes high-valued comprehensive utilization of the high-chromium vanadium slag, and the high-purity energy storage material for the flow battery is produced and obtained by a one-step chlorination-multi-stage recovery method.
priorityDate 2017-11-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24273
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559517
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6432707
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448315045
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419527028
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23976
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID82849
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454528645
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14915
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458391465
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6857397
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID312
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559288
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520720
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23930
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458427267
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449460707
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID71336965
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23990
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452183629
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14814
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6452300
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578887
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419576496
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID281
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449935454
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14945
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558805
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID86746833
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24380
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546429
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419521336
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559470
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559516

Total number of triples: 61.