http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-109546689-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d9de52bba13e16028dffa8775e3f3f28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_126e3f407dc4815570ece7e153058846
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_abb575fd7dc1c360505acce95e757b96
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y04S20-222
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H02J3-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H02J3-46
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H02J3-46
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H02J3-48
filingDate 2018-11-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2b5436ed953e6cd748945937f71433e6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3f2607744ad0159e65367c163731a5bc
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_14ee37f0854efa2541903c8471b54ecc
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_85336387d80af33d98f1dc3cc43e18cf
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e6f59ba73d9352f4799580f2755f8df8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a02000f655d30142750c2161d6b83700
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b50d1e9fc282aa7bf018a7323d857e6a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_59d59ff50a5d1e460aab60e435f2ef10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0cf60cd0d8fd6ee622dc8e761976b2f4
publicationDate 2019-03-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-109546689-A
titleOfInvention A two-stage unit combined operation control method suitable for large-scale systems
abstract The invention relates to a two-stage unit combination operation control method suitable for large-scale systems. The method includes a two-stage control process: in the first stage, based on a preset power-on priority order of generator sets, rotating reserve constraints and minimum start-up constraints are considered at the same time. The downtime constraint controls the unit state; in the second stage, the unit state obtained in the first stage is used as the input of the particle swarm algorithm, and the power balance of the unit ramp rate is considered to obtain the optimal output of the particle swarm algorithm. According to the optimal output Control the operating status of the unit combination. Compared with the prior art, the invention has the advantages of improving the calculation efficiency and calculation accuracy of the large-scale system unit combination.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110266058-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110266058-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113608957-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113608957-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112994011-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112994011-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111932048-A
priorityDate 2018-11-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-105760959-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4790
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419509864
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297

Total number of triples: 36.