http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-109052574-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2101-30
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F1-4672
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F1-46109
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F101-30
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F1-461
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F1-72
filingDate 2018-08-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-09-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2020-09-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-109052574-B
titleOfInvention Preparation of Ti/SnO based on tricarboxylic organic acid-Sn (II)/Sb (III) complex2Method for producing Sb electrode
abstract The invention relates to a preparation technology of an electrochemical oxidation electrode material, and aims to provide a method for preparing Ti/SnO based on a tricarboxylic organic acid-Sn (II)/Sb (III) complex 2 -Sb electrode. The method comprises the following steps: taking a pretreated Ti sheet as a working electrode, arranging counter electrodes on two sides of the working electrode in parallel, immersing the working electrode and the counter electrodes in an electrodeposition liquid, wherein the electrodeposition liquid is a mixed aqueous solution of stannous dichloride, antimony trichloride, tricarboxy organic acid and gelatin; connecting the positive electrode of a direct current power supply with a counter electrode, and connecting the negative electrode of the direct current power supply with a working electrode; after the electrodeposition is finished, the working electrode is dried at room temperature without being cleaned; and (3) after drying, preserving the heat for 1-3 h at the temperature of 450-650 ℃, and then cooling to room temperature to obtain the electrode product. The method has the advantages of simple operation, environmental protection, low cost, uniform and complete electrode surface and good coverage; the antimony doped tin dioxide on the surface of the electrode is uniformly and densely distributed, has high specific surface area and can provide more active sites in the electrochemical oxidation process; the electrode product has long service life and good stability in accelerated test.
priorityDate 2018-08-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-206244480-U
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-206244476-U
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523166
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14798
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458431511
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID784
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24988880
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID413908406
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474387
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4139
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24814
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87475531
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454183885
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549643
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5284466
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526621
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID424836942
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458397365
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28371
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14793
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414876161
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1198
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458397310
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23424032
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID421211758
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID971
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419476681
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447740608
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549163
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID29011
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5354495
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523934
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409060395
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518215

Total number of triples: 57.