http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-108607545-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2101-38
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-004
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J23-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F1-30
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F101-38
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F1-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J23-34
filingDate 2018-05-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-09-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2020-09-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-108607545-B
titleOfInvention Preparation method of high-performance zinc oxide/manganese dioxide composite catalytic material
abstract The invention provides a preparation method for preparing a zinc oxide/manganese dioxide composite material by a calcination method, which is comprehensively utilized under microwave oxidation and photocatalysis conditions. In the process of degrading tetracycline, the novel composite photocatalyst shows higher catalytic activity than pure zinc oxide and manganese dioxide under the synergistic condition of simulated sunlight and light waves. The enhanced photocatalytic activity is due to the good photothermal conversion capability of manganese dioxide. MnO compared with ZnO under simulated sunlight conditions 2 The vibration energy level of (2) is lower, and the light energy is easier to absorb. The absorbed energy can increase MnO 2 The temperature itself. At higher temperatures, the electron transfer rate is increased and the electron hole recombination rate is reduced. Therefore, the separation efficiency of photogenerated carriers is improved. Under the condition of optical wave synergy, MnO 2 Not only can light energy be utilized, but also microwave energy can be absorbed. The temperature of the composite material is increased more, so that the migration speed of electron holes is faster. These are all beneficial to improve the photocatalytic performance of the material. More importantly, the preparation method provides a new idea of adapting to catalysts with different catalytic conditions.
priorityDate 2018-05-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11955398
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457706951
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419533562
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID90472331
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453530231
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID516875
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559192
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453109149
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID54675776
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450563052
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14801
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14806

Total number of triples: 29.