http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-108149042-B

Outgoing Links

Predicate Object
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C22C1-045
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C22C27-04
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C22C1-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C22C27-04
filingDate 2017-12-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-04-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2020-04-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-108149042-B
titleOfInvention Low-temperature activation sintering preparation method of high-density molybdenum material
abstract A low-temperature activated sintering preparation method of a high-density molybdenum material belongs to the technical field of powder metallurgy. Weighing ammonium paramolybdate and nickel nitrate hexahydrate according to Mo-x% Ni (x is 0.1-1, mass fraction), adding deionized water to prepare a mixed solution serving as a precursor solution, and preparing precursor powder by adopting a spray drying method; calcining the precursor powder in a muffle furnace; performing two-step hydrogen reduction through a tube furnace; performing high-energy ball milling on the reduced powder at the rotating speed of 350rpm +6rpm and the ball-to-material ratio of 10:1 for 5 hours to obtain powder with the average particle size of 190 nm; carrying out die pressing on the obtained powder, and sintering for 60min at the highest temperature of 1400-1750 ℃ by adopting a high-temperature tungsten net hydrogen furnace; the preparation method provided by the invention has the advantages of low sintering temperature, short sintering time, high efficiency, energy conservation, high product density, fine and uniform grain size and less impurities.
priorityDate 2017-12-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452036238
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559557
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61630
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID935
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24602
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23932
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447631851
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23964
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425762086
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419405613
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25488
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412550040

Total number of triples: 30.