http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-108067217-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2305-10
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-004
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J27-047
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J23-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J27-051
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J27-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J37-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F1-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J37-343
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J37-035
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F1-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J37-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J37-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J37-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J35-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J27-047
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J23-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J27-051
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J27-04
filingDate 2017-12-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-06-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2020-06-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-108067217-B
titleOfInvention Preparation method of sulfide quantum dot modified graphene/zinc oxide nanoparticle photocatalytic material
abstract The invention discloses a preparation method of a sulfide quantum dot modified graphene/zinc oxide nanoparticle photocatalytic material, which comprises the following steps: dispersing 5-10 g of graphene/zinc oxide nano-microspheres in 50-100 mL of absolute ethanol, and adding 20-45 mL of sulfide quantum dot solution while stirring; and evaporating the solution to dryness, and grinding to obtain the sulfide quantum dot modified graphene/zinc oxide nano microsphere photocatalytic material. The method is beneficial to widening the spectral response range of the graphene/zinc oxide nano catalytic material, improving the optical quantum yield and catalytic activity, promoting the recovery of the graphene/zinc oxide nano catalytic material in sewage treatment, and solving the problems of narrow spectral response range, low photocatalytic efficiency, difficult recovery and the like of the graphene/zinc oxide nano catalytic material in practical application.
priorityDate 2017-12-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14819
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11192
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419515370
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451518796
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419547107
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5974
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412231340
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID408636244
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9793819
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID426379
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415876784
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5249824
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14806
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14823
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410697574
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23994
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14797
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419593248
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID209257
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409060395
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14798
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5250615
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450766143
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449957047
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3007855
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458437694
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559192
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426064197
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID408271913
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24518
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581

Total number of triples: 68.