http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-107916280-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12P2201-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E50-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12P2203-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12P7-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12P19-14
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12R1-865
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12P7-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12P19-14
filingDate 2016-10-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2021-11-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2021-11-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-107916280-B
titleOfInvention Lignocellulose stepped saccharification fermentation method with polyethylene glycol-water as medium
abstract The invention relates to a lignocellulose step-by-step saccharification and fermentation method with polyethylene glycol-water as a medium. The method takes pretreated lignocellulose as a substrate, takes a polyethylene glycol/water mixture as a fermentation medium, adopts a strategy of supplementing the substrate and cellulase in batches and removing solid residues of enzymolysis liquid step by step before fermentation, improves the solid content and reduces the concentration of toxic inhibitors, thereby obtaining high-concentration ethanol. The invention has the advantages that: the fed-batch process is favorable for heat transfer and mass transfer in the enzymolysis process, and hydrolysate with high-concentration reducing sugar can be obtained; solid residues generated by enzymolysis can be used as an adsorbent of fermentation toxicity inhibitors, fermentation toxic substances are effectively removed through centrifugal separation, enzymolysis liquid can be directly used for fermentation without detoxification treatment, and the polyethylene glycol can effectively relieve the inhibition of residual toxic compounds in liquid on ethanol fermentation; the obtaining of the hydrolysate of high-concentration reducing sugar can improve the concentration of ethanol produced by later fermentation, thereby reducing the production cost of the cellulosic ethanol.
priorityDate 2016-10-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP45699
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP15704
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07983
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP81190
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP37696
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP10475
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29019
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP23549
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP58935
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ12622
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP23548
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP17974
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4577
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP84194
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4530
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP10476
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP18336
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP15329
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4565
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP82186
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP23665
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP84196
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8Z289
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4530
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11579
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8ZLB7
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A024SH20
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCD3GDK4
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP18126
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP22669
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4577
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ12714
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4558
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP58599
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ05622
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4932
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP21833
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP46236
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP22699
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8RSY9
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A024SNB7
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4932
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP27035
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP46239
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP16216
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP19487
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4558
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP13933
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP46237
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409736587
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07982
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP21834
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO97401
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8X5L9
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07981
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP37651
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCC0HJH0
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4565

Total number of triples: 78.