http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-107442135-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2257-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2258-0283
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2523-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D53-88
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D53-565
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J38-64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J38-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J38-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J38-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D53-8628
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J38-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J23-92
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J23-002
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J38-66
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D53-88
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J35-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J23-92
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J38-64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J38-66
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J38-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J38-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J38-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D53-56
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J38-14
filingDate 2017-08-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-04-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2020-04-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-107442135-B
titleOfInvention Regeneration method of arsenic poisoning SCR denitration catalyst
abstract The invention belongs to the fields of environmental protection technology and catalytic denitration, and particularly relates to a regeneration method of an arsenic poisoning SCR denitration catalyst. The method comprises the steps of firstly carrying out soot blowing and impurity removal on the arsenic poisoning SCR denitration catalyst, then carrying out ultrasonic cleaning by using deionized water under the condition of introducing ozone-air mixed gas, then carrying out soaking and cleaning by using weak alkaline solution, then carrying out two-stage gradient reduction by using different reducing gases at different temperatures, and finally carrying out rapid heating and roasting in the air to obtain the regenerated catalyst. After the method is adopted to regenerate the SCR denitration catalyst poisoned by arsenic, the denitration efficiency is recovered to the level of a fresh catalyst, the arsenic removal rate reaches more than 99 percent, and the arsenic poisoning resistance of the regenerated catalyst is greatly improved. In addition, the method has simple process and stronger operability, and is suitable for large-scale industrial production.
priorityDate 2017-08-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559542
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419483691
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419586572
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID154082437
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID154082557
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID431905184
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450875387
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID431905511
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458393697
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453327643
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID21905809
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID281
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415910378
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451160908
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458427267
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449684419
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6334
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452570330
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6857397
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448315045
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5359596
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID700
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559478
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID21954822
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14923
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID261004
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6325
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24823
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556968

Total number of triples: 66.