http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-107164780-B

Outgoing Links

Predicate Object
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D11-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B1-55
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B11-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D11-024
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D11-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25B11-06
filingDate 2017-04-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2019-04-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2019-04-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-107164780-B
titleOfInvention A kind of preparation method of WO3/graphene quantum dot composite film photoanode
abstract The invention provides a preparation method of WO 3 /GQDs composite photoanode, which solves the problem of low photoelectric conversion efficiency of WO 3 . In the invention, a tungsten sheet is used as a matrix, an aqueous solution of sodium fluoride and sodium sulfate containing graphene quantum dots is used as an electrolyte, and a porous tungsten trioxide composite film containing graphene quantum dots (GQDs) is prepared by a pulse anodic oxidation method. The composite film is heated to 300-700° C. in a nitrogen tube furnace and kept for 3 hours, which is beneficial to improve the crystallinity of the WO 3 /GQDs composite film. Compared with the pure WO 3 thin film samples, the photocurrent of the GQDs/WO 3 composite film was significantly increased and the cycle life was very good. The method of the invention is simple and easy to operate, and the prepared GQDs/WO 3 composite film has high photocatalytic activity and stability.
priorityDate 2017-04-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14811
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447827115
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448151759
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450502002
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419575953
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1152
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707774
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24538
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62655
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451908603
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25516
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5235
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419537701

Total number of triples: 34.