http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-104862325-B

Outgoing Links

Predicate Object
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A01H5-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N15-82
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N15-54
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A01H6-46
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A01H6-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A01H6-54
filingDate 2015-06-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2018-04-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2018-04-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-104862325-B
titleOfInvention Applications of the rice mitogen-activated protein kinase gene OsMPK15 on seed vitality is improved
abstract The invention discloses rice mitogen-activated protein kinase gene OsMPK15 Application on seed vitality is improved, belongs to mitogen-activated protein kinase and its encoding gene and applied technical field.Technical scheme main points are to amplify rice by PCR method OsMPK15 The full length coding region cDNA of gene, structure OsMPK15 Over-express vector, improve OsMPK15 The expression of gene, transformation mode plant Arabidopsis thaliana, the results showed that transgenosis T3 in plant, transgenic arabidopsis seed has the stronger sprouting vigor under NaCl Stress than wildtype Arabidopsis thaliana seed.Therefore, if will OsMPK15 It is transferred in the important crops such as rice, corn and soybean and wheat, then may improves vigor of the important crop seeds under salt stress. OsMPK15 Application can reduce the whole world every year because salt stress and caused by huge agricultural losses, there is important economic benefit and application prospect.
priorityDate 2015-06-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448670727
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ767J3
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP00639
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID3702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5234
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP49183
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID428054790
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID9735431
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID3847
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9YGI5
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419502593
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID3702
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4577
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID395725
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP11937
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4530
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID3847
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410509432
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID837421
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP11936
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO18998
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID1773
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4565
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4530
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP21704
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO42446
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID13419
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID68561600
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP24855
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24182
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4577
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP27638
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ39008
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID152743192
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID436947
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4565
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID282217
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ4AEE3

Total number of triples: 52.