http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-104576019-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02W30-50
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01F41-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B22F8-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01F1-057
filingDate 2014-11-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2017-02-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2017-02-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-104576019-B
titleOfInvention Method for preparing NdFeB (neodymium-iron-boron) magnet by waste materials
abstract The invention relates to an NdFeB (neodymium-iron-boron) magnet, in particular to a method for preparing the NdFeB magnet by waste materials, and belongs to the technical field of magnetic materials. The preparing method of the NdFeB magnet comprises the following steps that firstly, NdFeB magnet waste materials are cleaned and are dried through being blown, the NdFeB magnet waste materials are crushed into particles being 10 to 15mm by a crushing machine, rare earth metal is added into the particles, then, hydrogen crushing treatment is carried out to obtain crushed powder, and next, antioxidants are added for airflow grinding to obtain fine powder with the average particle diameter being 3.0 to 4.0 mu. m; next, lubricating agents are added, orientation is carried out under the protection atmosphere of nitrogen gas, in addition, pressing forming is carried out, and finally, NdFeB magnet finished products are obtained through discharging plasma sintering, secondary tempering heat treatment and surface treatment. The method has the advantages that waste materials are used as major raw materials, the simple and feasible preparing method is adopted, the recovery and utilization rate of the waste materials is effectively improved, in addition, Tb, Dy, Nd and Ce are added and compounded in the preparing process, and the obtained NdFeB magnet has better coercive force, residual magnetism and magnetic energy product.
priorityDate 2014-11-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23968
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448380735
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415776181
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458357694
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10340
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3283
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448098817
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3423265
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID84862
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559261
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415779090
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID82789
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5497163
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412188633

Total number of triples: 30.