http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103849627-B

Outgoing Links

Predicate Object
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N15-29
filingDate 2014-01-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2016-01-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2016-01-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-103849627-B
titleOfInvention Kyoho Drought Resistance Gene VvMBF1 of European and American Hybrid Grapes
abstract The present invention discloses a European and American hybrid grape Kyoho drought-resistant gene VvMBF1, with a total sequence length of 767bp, including a complete open reading frame sequence with a total length of 429bp, and encoding 142 amino acids. , the drought resistance gene VvMBF1 of the European-American hybrid Vitis vinifera can significantly improve the tolerance of Arabidopsis to osmotic stress, drought stress and dehydration treatment. Under drought stress, the electrolyte leakage rate (EL), the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) in the transgenic lines were significantly lower than those in the wild control, while the content of proline (Proline) was significantly higher than that in the wild control. Stomatal studies showed that transgenic lines were more sensitive to ABA treatment than wild-type controls. The results of quantitative analysis of drought resistance genes showed that the expression levels of drought resistance genes AtRD22 and AtRD29B dependent on ABA pathway in the transgenic lines were significantly higher than those in the wild control. It was shown that the overexpression in transgenic Arabidopsis improved the drought resistance of plants through the ABA-dependent pathway.
priorityDate 2014-01-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID29760
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419486837
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID50689
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID74718
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7071
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524875
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID74718
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID7091
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID5595
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID59022
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID839143
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID51150
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID145742
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID447435
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID444060
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID8721
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID5507
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID399480
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID454037
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID3702
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID20318
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID29760
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID373953
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID26417
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID3702
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07749
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID5507
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP18418
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID531391
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID7091

Total number of triples: 41.