http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103483422-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_bceed6bebc0cc13575ef9690aa72e1c0
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61K51-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07K1-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07K1-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07K7-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07K7-08
filingDate 2013-09-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2015-06-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a89cc7ca7ad3f51a0322ac3854cbde52
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8c339b93980e06b2a06a668a5d56e3a1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_768d8e17c692970394bcaf4c203f9fc7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3edf602808230124b8dc984f393293b5
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d5807a75e4af912738153c48d166d590
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8c2ede3e031a8b2a9baae55db471e533
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d721ffcf82ca440c3b5c58f32bed383e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_05ad87842cfa311509ef166deb568a2b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0ede9c55a2db734e6de96d55ab2825e4
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_cb666a85541059800b4a09dcf3cdb3cd
publicationDate 2015-06-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-103483422-B
titleOfInvention NGR polypeptide radiopharmaceutical as well as preparation method and application thereof
abstract The invention relates to an NGR (asparagine-glycine-arginine) polypeptide radiopharmaceutical as well as a preparation method and application thereof. The currently reported radionuclide-labeled NGR-containing sequence has a higher liver uptake rate. The NGR polypeptide radiopharmaceutical is formed with the preparation method comprising the steps as follows: monomers and dimmers of an NGR cyclopeptide are connected with a chelating agent NOTA to form a coordination compound, and the coordination compound finally forms the radiopharmaceutical through chelation of the NOTA (disodium edta) and radionuclides; the targeting action of the NGR polypeptide enables the radiopharmaceutical to be concentrated to a tumor part, and the nuclear medicine positron emission computerized tomography technology is utilized to image the CD13 positive tumor, so as to achieve the purpose of specific diagnosis. According to the invention, since the NOTA is used as a bifunctional chelator to be chelated with the radionuclides, and the p-SCN-Bn is used as a coupling agent to enable the NGR to be directly connected to a carbon skeleton of the NOTA, the situation that the coordination of the carboxyl oxygen atoms and the radionuclides is influenced by connection of the coupling agent and the NOTA carboxyl is avoided; seen from the metabolism in vivo, the radiopharmaceutical can be quickly metabolized through the kidney after being injected into the body, and the liver uptake rate is lower.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-3882257-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2021186071-A1
priorityDate 2013-09-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-101124243-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1664388
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID767
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6321432
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419487901
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID16790
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID290
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8759
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523858
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578938
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538066
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419522894
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3763
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID679
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415824855
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID81531
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID33032
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID397520
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1664388
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID404191
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID105141
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6327611
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558837
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID322533
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414804309
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID121841
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID517045
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454515022
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID124326
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26476
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419515981
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415810583
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10171321
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID81641
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419507060
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6422
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425553238
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419499538
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419513513

Total number of triples: 71.