http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103305568-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_cb351a5a4e03ee3773bd0df5dbae9ac3
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12P19-04
filingDate 2013-06-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2015-01-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_743ec8a912a077873726ddb060d9d56b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fe74924b030d653dc644e554f043c89b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_099d0013c912d7270957fe9ead3f0067
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3c4d625ca26b106ce179ebf7c251df40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f389fa431fdbf801c940e5223aed78c6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8d0d6e6ced6bd124385b7a2758d8529e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_cb7bd61cf7aecd1a76053331c5d442e8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dd04949b7a3a1a414461229ea6d83802
publicationDate 2015-01-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-103305568-B
titleOfInvention Preparation method of starch nanocrystal ester
abstract The invention provides a preparation method of starch nanocrystal ester, belonging to the technical field of starch deep processing. According to the principle of the method, based on the strong adsorption capacities of nanoscale particles on the oil-water interfaces, acid is adopted to hydrolyze starch restrictively to micronize the starch to obtain starch nanocrystals with certain surface activities and dimensions of 50-100nm. After the micronized starch nanocrystals are subjected to surface modification through enzymatic ester exchange by adopting methyl oleate, the surface hydroxyl groups of the micronized starch nanocrystals are connected with hydrophobic carbon chains by ester bonds, thus further improving the surface activities of the micronized starch nanocrystals. By adding 1% of the surface esterified nanocrystals, water and liquid paraffin (1:1) systems can form stable emulsion, the emulsifying capacity reaches 65% and the median diameter D50 of the emulsion is 70mu m. The particle size distribution of the emulsion is free from obvious change after the emulsion is put under room temperature for three months. The oleic acid esterified nanocrystals prepared by the preparation method have strong emulsifying capacities and high emulsifying stability and have extensive industrial application prospects.
priorityDate 2013-06-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID886728
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ93MW7
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID34152
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID3919527
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID445639
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456986878
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID152743267
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID185840
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID188437
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCD4A9L7
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP61871
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458397310
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID187940
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID185800
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID430778997
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ5HKP6
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID184306
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP0C0R3
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426507572
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP0C0R4
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP04635
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9VG48
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP61872
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5364509
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ5U780
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID16891
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA8WGN9
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID13221340
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ55EU1
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412584819
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP26504
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ20449
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID185178
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID291437
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ3UT41
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A3Q1M1X5
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO59952
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412806562
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID190108
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID4811470
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419530529
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11276246
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1118
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP19515
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID86278134
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID184068
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP41773
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID187316
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID8284735
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID3921488

Total number of triples: 74.