http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103279689-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_be2c55a9de09e08e3404c0a5a1ae4dc7
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F19-12
filingDate 2013-05-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6e1a26160c04e30fe65981de0adfb126
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_408fa76826949ce9683222ed526f0282
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_58398266bca2b6a41637eb29f4d0ce94
publicationDate 2013-09-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-103279689-A
titleOfInvention Secondary approach transformation method based on instruction of FK506 production bacterial strain wave chain streptomycete genome scale metabolic network model
abstract The invention discloses a secondary approach transformation method based on an instruction of an FK506 production bacterial strain wave chain streptomycete genome scale metabolic network model. The model is based on annotation genes and physiology and biochemistry information. By comparing and analyzing the model with a streptomyces coelicolor genome, metabolic genes are found being highly conservative. Metabolic flux analysis is performed on a genome scale metabolic network, and therefore the model predicts a mutation bacterium secondary approach gene cluster transformation strategy for improving a production level. According to the secondary approach transformation method based on the instruction of the FK506 production bacterial strain wave chain streptomycete genome scale metabolic network model, the transformation method utilizes the genome scale metabolic network model to predict special structural genes in an FK506 bacterial strain secondary approach gene cluster, the production level of bacterial strains after transformation is improved by 20 percent to 90 percent, the special structural genes in the gene cluster are augmented to improve production capacity, and large application value is achieved in secondary approach rational transformation of microorganism immunosuppressor production bacterial strains. The high-efficiency and systematic method is provided for optimizing of the bacterial strains.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111223527-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111223527-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11208649-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11312951-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-109943545-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11352621-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-109943545-B
priorityDate 2013-05-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4837
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1908
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6306
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414869987
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419507546
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A348AXX4
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID562
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID562
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558427
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426067522
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415834440
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1908
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546724
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1902
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID485223053
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ333U7
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID3847
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID417109324
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID68561600
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID66868
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419481593
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419582313
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12034
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID456557
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1902
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID3847
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID445643
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID83656
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID40970370
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1110
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3081545
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5280754
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID21585658
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6287
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1664388
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426268266
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419582317
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1664388
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID67294
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523883
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID612
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID428054790
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523877
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID83656
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549088
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID136906
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8742
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12039
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474094
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID67294

Total number of triples: 73.