http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103265721-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_1fefd66fdbc3870bbaa8e5a4f87bdb0a
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08J9-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08F259-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08F259-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-0565
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08J9-40
filingDate 2013-04-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2014-12-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5da292bc570a8afe69dc154db7c517c8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_db0cc81ebab548acf046dc91d4bd3634
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8b2af792917713b6d176ab29ff8cc69b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8ec8ad9113d815ddbac50a756c764188
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_adfe0d3b310fdb8d3f6cd147f2f17faa
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f4b72eefd4e64755e4e69da80f44725c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0f40bc724259c81eb70e97bdd9f57083
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8ab9a02453676a772fbfd5badf33e0af
publicationDate 2014-12-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-103265721-B
titleOfInvention Gel electrolyte based on porous matrix and resisting electrolyte leakage and preparation method thereof
abstract The invention provides a gel electrolyte for a lithium ion battery based on a single ion conduction porous matrix and a preparation method thereof. The preparation method comprises the following steps: preparing a polymer having the characteristic of single ion conduction; further preparing a porous matrix with a certain pore structure from the prepared polymer by using a phase inversion method; and dipping the porous matrix in an electrolyte containing organogelators for in situ gelation. The organogelators form a network structure through self-assembly in the porous matrix in a non-covalent bond manner and constrain the electrolyte in micropores, so electrolyte leakage is effectively inhibited. The transmission behavior of a lithium ion in the gel electrolyte is similar to that in an electrolyte, so the prepared gel electrolyte has the characteristics of a low electrolyte leakage rate, high lithium ion conductivity and high mechanical strength. The single ion conduction polymer matrix guarantees that a prepared electrolyte material has a great transference number of lithium ions.
priorityDate 2013-04-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6342
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419519592
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450917356
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491870
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID417430547
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24593
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458393621
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559502
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520276
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559065
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6228
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538066
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558806
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24195063
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID174
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7924
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426039638
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6594
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID753
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID13387
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID53627496
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7766
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419483452
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID679
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4585885
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62652
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419572542
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID18196
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512309
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID31374
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419517688
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419490115
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546727
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453574336
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28486
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410

Total number of triples: 62.