http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103147130-B

Outgoing Links

Predicate Object
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D9-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B30-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B29-16
filingDate 2013-01-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2016-05-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2016-05-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-103147130-B
titleOfInvention The preparation method of transition metal element doped ZnO nano array and comprise the semiconductor devices of this nano-array
abstract The invention belongs to semiconductor nano material preparing technical field, is a kind of method of utilizing the ZnO nano array that non-template electrochemical deposition grows transition metal element doped. The present invention adopts standard three-electrode system, and taking platinum electrode as to electrode, saturated calomel electrode is reference electrode, and conductive substrates is as working electrode. Electrolyte is by KCl, zinc source ZnCl 2 , transition metal villaumite and for regulating Zn 2+ Active soluble bromine salt composition constantly passes into O in deposition process 2 , water bath heating temperature is 60~95 DEG C, adopts potentiostatic electrodeposition method, and sedimentation potential is-0.9~-1.1V, and sedimentation time is 0.5~4h. After deposition finishes, repeatedly rinse by deionized water, in conductive substrates, obtain transition metal element doped ZnO nano array. The method is beneficial to and obtains the relatively high nano-array of doping content, simple to operate, reproducible. The ZnO nano array obtaining can be applicable to various super low energy consumptions, highdensity semiconductor device.
priorityDate 2013-01-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2012143632-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549332
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24956
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24385
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419525958
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559351
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559213
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458431511
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24014
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4873
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID318055
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID318055
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449957047
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449949725
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24480
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449731539
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416645804
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3007855
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458437694
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID32051
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23939
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558213
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546721
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3032536
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453569306
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23994
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID253877
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID260
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID253881

Total number of triples: 46.