http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103094832-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a4a713894ac9f30dda1299300e99f80b
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-026
filingDate 2013-01-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2014-12-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4f3f1fa9b61d368e03976c1997949295
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ffec4f1ac16140f715b8e666b4a1d964
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ee00942369c7182f2d01de5b8e3d8dbb
publicationDate 2014-12-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-103094832-B
titleOfInvention Manufacture method for monolithic integration titanium film thermal resistor tunable distributed feed back (DFB) laser
abstract The invention discloses a manufacture method for a monolithic integration titanium film thermal resistor tunable distributed feed back (DFB) laser. The manufacture method comprises the steps of selecting an indium phosphide substrate 1, sequentially and epitaxially growing a buffer layer 2 and a multiple quantum wells active area 3 on the substrate 1, manufacturing even gratings 4 on the surface layer of the multiple quantum wells active area 3 by adopting holographic exposure etching, growing a cladding 5 and an electric contact layer 6 on the even gratings 4, adopting a regular photoetching and etching process, manufacturing a ridge waveguide structure 7 on the electric contact layer 6, growing a passivation layer 8 on the manufactured ridge waveguide structure 7, sputtering titanium and gold metal film on the passivation layer 8 after a front face electrode window is opened by adopting regular photoetching, coating photoresist on the metal film, photoetching a front face electrode pattern 9, a film resistor pressure welding electrode pattern 10 and a film resistor area 11 for once, photoetching and selectively etching for twice to form a titanium film thermal resistor strip 11, manufacturing a back face electrode 12 on the back face of the substrate 1 after the indium phosphide substrate 1 is thinned, and achieving manufacturing of a tube core.
priorityDate 2013-01-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID482532689
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3084099
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID31170
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419522015
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23985
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557764
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758

Total number of triples: 24.