http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103022257-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ac31afbea1cbbb03498644721ffb4a62
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02P70-50
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L31-18
filingDate 2012-12-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2015-01-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c258b5d6f6c3ce6fa6a7ee96452a8f5c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e0ebf5d1b6aacd093c263e66c8045f05
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0e693bbf89f585cbc81db86b113801b1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_480ccd77625f207bd2925fa693c190f2
publicationDate 2015-01-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-103022257-B
titleOfInvention Manufacturing method of p-i-n junction InGaN solar cells
abstract The invention discloses a manufacturing method of p-i-n junction InGaN solar cells. The manufacturing method includes the steps of cleaning a substrate; growing a GaN layer on the substrate; growing a full strain relaxation high-In-content InGaN layer; continuing to grow an InGaN superlattice layer in high-In-content InGaN/GaN structure, a high-In-content n-InGaN layer, a high-In-content i-InGaN layer, and a high-In-content p-InGaN layer; heating to grow a p-GaN layer; etching the p-GaN layer to obtain a cell top; forming a grid ohmic electrode on the p-GaN layer by evaporation; and forming an ohmic electrode on the top of the high-In-content n-InGaN layer by evaporation. The p-i-n junction InGaN solar cell structure is directly grown on the full strain relaxation InGaN layer and the InGaN superlattice layer, the full strain relaxation InGaN layer and the InGaN superlattice layer cause no mismatch strain to the p-i-n junction InGaN solar cell layer, and accordingly quality and cell conversion efficiency of the p-i-n junction InGaN solar cell material can be increased effectively. In addition, the low-In-content i-InGaN layer is located between the high-In-content n-InGaN layer and the p-InGaN layer, lattice mismatch causes tension strain to the i-InGaN layer, and accordingly conversion efficiency of the p-i-n junction InGaN solar cell can be further improved.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2018129353-A1
priorityDate 2012-12-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2006135269-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2009111019-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-100803246-B1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID76919
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID15051
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518864
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419550829
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID222
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518858

Total number of triples: 25.