http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-102617140-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_f74630d1eee9f20251db4cc0a6fe5072
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C04B35-622
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C04B35-48
filingDate 2012-03-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2014-08-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4e139350670cf3086202e7416c1d8222
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ac9e1e8aed25b1672b24e17e242185df
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d4c8180fbb6750750bef7315d1e3726a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3ba060b97647d9d1f7821b05becdc3df
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c5346bf4e7d9fb0f875ae74afd759ab2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d62ea07dea129149b3169d15bb7c3496
publicationDate 2014-08-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-102617140-B
titleOfInvention Stibonium-doped quasi garnet-structured lithium ion crystalline-state solid electrolyte material and synthesis method thereof
abstract The invention provides a novel quasi garnet-structured lithium ion conductor (Li7-xLa3Zr2-xSbxO12, wherein x is more than 0 and less than or equal to 0.5) crystalline-state ceramic solid electrolyte material and a synthesis method thereof, and belongs to the field of lithium ion batteries. A novel quasi garnet-structured lithium ion conductor is synthesized by conventional solid-phase reaction. X-ray diffraction (XRD) diffraction peaks of Sb-doped samples show that the Sb-doped samples all have crystalline -state cubic phase quasi garnet-structures in the Sb doped range. The maximum lithium ion conductivity can reach 3.42*10<-4>S/cm at room temperature (30 DEG C). The sample is synthesized by the conventional solid phase method, a preparation process is simple, and sintering time is short. Zr is partially replaced by high-valence Sb, so the lithium ion vacancy is increased, the ionic conductivity is improved obviously, and antimonous oxide is low in price compared with zirconia, so manufacturing cost is reduced. Therefore, the synthesized compact ceramic solid electrolyte material can be probably applied to a lithium ion battery.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-3819974-A1
priorityDate 2012-03-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID29154
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449664606
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449052118
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524340
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10129889
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419493082
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID27652
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491870
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62395
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454404495
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID150906
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425836335
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419593355
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453918477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87184782
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3028194
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577485
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID19660
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID135111
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23926
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID943
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549163
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450964499
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559376
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3084632
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707785
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453950796
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID39147
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5354495
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23995
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559587
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450420853
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474137
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11125
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28486
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14794
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559021

Total number of triples: 58.