http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-102408246-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_8eaf0e75177d288022d3cbabcc3ceada
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C04B38-00
filingDate 2011-08-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2013-07-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_73aa339afa0509bf1d52fdf285a35605
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7ff06b1181934fb8369432178b1e737a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7f47dc916f9c000e53c0e5e23ce16b4d
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8e30e4b0376625eb979c2129374053b9
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_86909c6f8b96f5a30a9b6c2c537ec712
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1a6377fae11038c45a1203a8a95bc390
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_426d31c8f86d87aa38b255328fbff0d4
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4d7cbd41b43a00a4a1d9b78f6ef5035d
publicationDate 2013-07-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-102408246-B
titleOfInvention Preparation method of nitrogen-doped silicon-aluminum immobilized TiO2 porous ceramic
abstract The invention provides a preparation method of nitrogen-doped silicon-aluminum immobilized TiO2 porous ceramic. The preparation method comprises the steps of: carrying out reaction with water-soluble inorganic silicon salt as a silicon source, water-soluble inorganic titanium salt as a titanium source, water-soluble inorganic aluminum salt as an aluminum source, urea as a nitrogen source and cetyl trimethyl ammonium bromide as a template agent to obtain a suspension D, transferring the suspension to a hydrothermal kettle, carrying out hydrothermal reaction, after hydrothermal reaction is finished, washing, carrying out suction filtering to obtain filter mud, granulating and shaping the filter mud, then drying to obtain nitrogen-doped silicon-aluminum immobilized TiO2 precursor, and sintering the nitrogen-doped silicon-aluminum immobilized TiO2 precursor to obtain the nitrogen-doped silicon-aluminum immobilized TiO2 porous ceramic. According to the invention, urea is used as the nitrogen source, under hydrothermal high-temperature and high-pressure conditions, N-H bond in urea can replace oxygen in Ti-O to firmly bond in a chemical bond form, thus effective doping is achieved; and in addition, lattice distortion generated due to nitrogen entering TiO2 lattice can broaden photoresponse range of TiO2 and increase photocatalysis activity under visible light.
priorityDate 2011-08-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419483880
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449308810
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419596818
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID407275646
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526621
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559541
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5461123
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5974
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID222
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451289241
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412584818
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1176
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450766143
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448467028
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5359268
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23266
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23673835
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID44564
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1117
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491804
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14456
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26188
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419532366
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579030
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24850
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291

Total number of triples: 53.