http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-102386402-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e724947aca08ece34e3642ea8b73ec44
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-58
filingDate 2011-10-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2013-09-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_05c97e6acb29700adc235102f77c8f15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_55a256e715bd95d36cecedcadb83d350
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a756ebf9a754e4ec4ca27594dbdb4a46
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1930e751edb184350849c2ffce3dbec1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1eb83fea703ee6d3c7d97bd0ebfc8a00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a7a7eb1e373ef2920ec19fce659c9509
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4fb9709c750cc38d323cb154ff71be3b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d223a223bd341348118c55ab98bf61d8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ac9716cf19817fee6c3bda8e94d674db
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8926e2b857109629525661f044f175ee
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f7d19517cf3f253fc38350df1d7c3550
publicationDate 2013-09-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-102386402-B
titleOfInvention Preparation method of cobalt/barium activated lithium iron phosphate anode material
abstract The invention relates to a preparation method of a cobalt/barium activated lithium iron phosphate anode material, which comprises the following steps: mixing a lithium source, an iron source, a phosphate radical source, a cobalt source and a barium source at a ratio of 1mol Li : (0.00002-0.00005) mol Co : 0.0003 mol Ba : 1mol Fe : 1 mol P, performing high-speed ball milling in an anhydrous alcohol medium at a rotation speed of 200 r/min for 20 h, drying at 105-120 DEG C to obtain a precursor, placing the precursor obtained via the drying into a high-temperature furnace, and performing high-temperature calcination in a nitrogen atmosphere at 500-750 DEG C for 24 h to obtain the cobalt/barium activated lithium iron phosphate anode material. The doping of a small amount of cobalt/barium is helpful for controlling the morphological form and particle size of product and obtaining stable lithium iron phosphate compound, the crystal lattice of the cobalt/barium activated lithium ironphosphate anode material is activated so as to improve the lithium ion diffusion coefficient, and the initial discharge capacity of the obtained material is up to 160.52 mAh/g; the lithium electrode potential of the charging/discharging platform for the method is about 3.5 V, the initial discharging capacity is over 168 mAh/g, and the capacity after 100 cycles of charging/discharging is attenuated by about 1.2%; and comparing with the non-doped LiFePO4 comparison example, the specific capacity and cycle stability of the obtained material are greatly improved.
priorityDate 2011-10-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448169241
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452721686
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578007
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5355457
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411550722
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID15320824
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6093286
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454549124
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491870
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24402
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453553186
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458391437
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520511
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449015670
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5360350
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1004
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14786
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23669251
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450532805
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28486
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452458000
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6857597
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3028194
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24190655
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450479996
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454607489
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559587
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID888
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID104730
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11651651
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24861
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449824900
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24798
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491806
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453291172
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10565
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID168963
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453575137

Total number of triples: 66.