http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-102315418-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_0e1c660179935c4cddcbbda6d455b71d
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-04
filingDate 2010-06-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2013-05-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_69f183ee243bb38479b9a0141d8ead76
publicationDate 2013-05-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-102315418-B
titleOfInvention Secondary battery additive, processing method thereof and secondary battery
abstract The invention belongs to the field of secondary batteries. In order to solve the technical problem that the degree of improvement to the high-rate discharge performance of the battery is limited after the electrode of the secondary battery is added with an unprocessed ultra-fine high-specific-surface porous carbon material with specific surface area being 200-3000m<2>/g, average grain size being 0.01-30mum and porosity being no less than 10 percent, the invention firstly provides a processing method for a secondary battery additive and the additive obtained after processing through the method. The processing method comprises the following steps of: fully soaking a raw additive in alkaline liquor or acid liquor, then washing the raw additive till the pH value is neutral, conducting heat treatment for more than one hour at 700-900 DEG C under the protection of inert gas, and finally using oxidizing gas to partially oxidize the raw additive to obtain the processed modified additive. The raw additive is the carbon material with the specific surface area being 200-3000m<2>/g, the average grain size being 0.01-30mum and the porosity being no less than 10 percent. The 5C discharge rate at normal temperature and the 2C discharge rate at negative 10 DEG C of the secondary battery provided by the invention are improved relative to the 5C discharge rate at normal temperature and the 2C discharge rate at negative 10 DEG C of the secondary battery which is added with a secondary battery additive which is not processed by the processing method provided by the invention. Especially, the 2C discharge rate at negative 10 DEG C is improved by approximately 30 percent on average.
priorityDate 2010-06-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007195488-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID13738549
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520996
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24823
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14782
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559478
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID422074910

Total number of triples: 23.