http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-102234814-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_89d8e7355750aa815842a3fa5b382c19
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25B11-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25B11-03
filingDate 2010-05-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2013-11-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_23ef9ff2d604415a52c21d56581cbaf5
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_14f8009482e425a9f37db54a3022dafb
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_020a45c02625fd8d22a006ccd746a99b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9ca1981df1b65e0c3cefb7562c27e5ba
publicationDate 2013-11-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-102234814-B
titleOfInvention Macroporous electrode and preparation method thereof
abstract The invention discloses a macroporous electrode and a preparation method thereof. The macroporous electrode is composed of a three-dimensional SiO2 ultrathin film substrate with large aperture and an antimony-doped tin oxide film, wherein tin oxide is covered on the three-dimensional SiO2 ultrathin film in a nanometer ultrathin film mode. The preparation process comprises the following steps: firstly, preparing a three-dimensional skeleton structure by epoxy resin; then, dipping the three-dimensional skeleton structure in tetraethyl orthosilicate; roasting in a muffle furnace to obtain the three-dimensional SiO2 ultrathin film; by combining with a sol/gel traditional method, dipping the three-dimensional SiO2 ultrathin film in a glycol mixed solution of SnCl2/SbCl3 used as an impregnation liquid; and carrying out hydrolysis step by step, high-temperature calcining and the like to generate the antimony-doped tin oxide (ATO) nanometer film to be adhered on the surface of the substrate. The macroporous electrode prepared by the preparation method has the advantages of strong electrical conductivity, oxidation and corrosion resistance, material saving and low cost, and can be directly used as an electrode material and an electro-catalysis material; and the size of the electrode can be regulated to adapt to the requirement of industrial purposes.
priorityDate 2010-05-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5354495
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546113
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6517
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5284466
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549643
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID174
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID417430547
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518845
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5352426
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419550829
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24814
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524915
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549163
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523934
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8111
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID29011
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419555680
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447740608
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5565
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID222
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558642
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7965
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410

Total number of triples: 41.