http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CA-3099816-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d0809114dddebd5a39779b0562828e8f
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-85
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-40
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-0296
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-036
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B29-46
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G21-21
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B33-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-1868
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B29-46
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B33-00
filingDate 2019-05-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_71b11fc1da3e5629cc10511170386af2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9e5d38652c2bcf6b99644d274117dbd2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7c6339fe95cd1ff0b457f25f9ade4c39
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_730d96dbe0d91becc891ffb07ef3da50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1d2f811f632c77d9a656befcfd1fbfae
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6129a689aec9717aa50eb8b2be390509
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_529ba84cf3a6b63655f229078681a489
publicationDate 2019-11-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CA-3099816-A1
titleOfInvention Passivation of nanocrystals tailored to different facets, and its application to optoelectronic devices
abstract The present disclosure provides a method for facet-selective passivation on each crystal facet of colloidal nanocrystals via solution-phase ligand exchange process, thereby providing highly-passivated and colloidally-stable nanocrystal inks. This ligand exchange strategy separately addresses polar and non-polar facets precluding from deleterious nanocrystal aggregation in the colloid. The method involves the introduction of alkali metal organic complexes during metal halide conventional solution exchanges, and one specific example is Na+·Ac?. Alkali metal ions stabilize and passivate non polar facets whereas polar facets are passivated through metal halides. This strategy leads to a significant decrease in nanocrystal aggregation during and after ligand exchange, and to improved photophysical properties stemming from this. The resulting nanocrystal solid films exhibit improved stability, retain their absorption features, and have a minimized Stokes shift.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113145141-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113145141-B
priorityDate 2018-05-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559508
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559587
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID406903349
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5360545
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID260
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559516
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559213
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425553238
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14819
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559553
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID445639
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24931
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419593248
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559218
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419539911
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24831
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3028194
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID807
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5462222
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578729
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419554831
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577479
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID175
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415712603
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546929
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556587
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5357696
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6326970
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6228
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4389803
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419490115
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10902
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456126543
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID517045
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24408
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426031689
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5354618

Total number of triples: 71.