http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CA-2831147-C

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_5e00737baa4c48d61cae4ca2fab7c0e9
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01B1-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08L79-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08L1-04
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08J5-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08L79-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08L1-02
filingDate 2012-03-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2015-02-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1522bb4d1819e3d63c7ed4c75f6a9237
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e25c9725df80046f6e784e9d9e1a436b
publicationDate 2015-02-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CA-2831147-C
titleOfInvention Flexible, semiconducting nanocomposite materials based on nanocrystalline cellulose and polyaniline
abstract A new approach is conceived for the development of organic polymeric conducting materials synthesized from nanocomposites of nanocrystalline cellulose (NCC) and polyaniline (PANI). The process involves oxidative-radical polymerization of aniline in the presence of NCC using either in situ or emulsion polymerization. The resulting NCC-PANI nanocomposite material can be obtained in film or powder form and exhibits electrical conductive properties typical of semiconducting materials. Unlike PANI, a brittle conductive polymer, NCC-PANI nanocomposite materials can be engineered to possess significant flexibility, strength and/or hardness as a result of the NCC acting as a reinforcing scaffold. Depending on the preparation conditions, electrical conductivities for the NCC-PANI nanocomposite materials prepared according to this disclosure range from 9.98 x 10-5 to 1.88 x 10-2 S.cm-1; they could also have hardness > 0.189 GPa or be formed into flexible films of tensile strength of the order of 9.74 MPa and stretch of the order of 0.54%. These unique electrical and mechanical properties render these materials suitable for use in a variety of value-added industrial products, such as batteries, electronics, electrical sensors, separation membranes, anti-static coatings for aerospace applications, as well as anti-corrosive coatings for automotives and other industrial applications.
priorityDate 2011-03-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450906005
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7564
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419564793
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8870
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6115
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3713298
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425997769
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID424505117
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419479687
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8485

Total number of triples: 28.