http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CA-2516091-C

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_01396215308486fb20e9dd2f95037972
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6825
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12Q1-68
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-26
filingDate 2003-03-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2016-03-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_870a715aa4c70b30265e3e211a6a1024
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2bb49c156ea989575e3378af7e8e321a
publicationDate 2016-03-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CA-2516091-C
titleOfInvention Dna and rna conformational switches as sensitive electronic sensors of analytes
abstract The electrical conductivity of DNA and other oligonucleotide constructs is dependent on its conformational state. Such a dependence may be harnessed for the electronic sensing of external analytes, for instance, adenosine. Such a DNA sensor incorporates an analyte receptor, whose altered conformation in the presence of bound analyte switches the conformation, and hence, the conductive path between two oligonucleotide stems, such as double-helical DNA. Two distinct designs for such sensors are described that permit significant electrical conduction through a first or "detector" double-helical stem only in the presence of the bound analyte. In the first design, current flows through the analyte receptor itself whereas, in the second, current flows in a path adjacent to the receptor. The former design may be especially suitable for certain categories of analytes, including heterocycle-containing compounds such as adenosine, whereas the latter design should be generally applicable to the detection of any molecular analyte, large or small. Since analyte detection in these DNA sensors is electronic, the potential exists for their application in rapid and automated chip-based detection of small molecules as well as of proteins and other macromolecules.
priorityDate 2002-03-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID447916
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID611193
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID448378
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10394
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447706689
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID37476
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410890490
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419547276
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID738472
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID135497479
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID67030
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23948
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID432787922
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419583587
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577470
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID567193
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419503618
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID6908
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID3960
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426132196
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID542240
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7059438
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID395995
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410445168
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6099
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID135498233
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8082
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID165295
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID36294
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28123
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID549093
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID167511
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419483899
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP02701
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCF1PQA5
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559577
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6029
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526655
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6102284
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID159383
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID547805
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A5F4DKR2
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454140200
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6780
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415861285
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447980235
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419554679
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558919
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448333909

Total number of triples: 63.