http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CA-2288448-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9ce023a6c13740cb05a67332f11a29f9
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C07C319-14
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07C321-28
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07C319-14
filingDate 1999-11-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d6ff2944c0bf88a5fb16015fd520fa91
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_28a1d45541dd93478042f7404b3aced3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dabcb67a806b73437642367cb8b13d4a
publicationDate 2001-05-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CA-2288448-A1
titleOfInvention Alkanethiolation process
abstract A mixture formed from one or more alkyl disulfides, benzene, and at least about 1.5 equivalents of Lewis acid catalyst is heated to form alkanethiobenzene. Reaction in a mixture formed from excess benzene, dimethyldisulfide (DMDS) and AlCl3 in which the mole ratio of AlCl3 to DMDS was 2:1 was complete in 2 hours and afforded 98% conversion and 93% yield of thioanisole. In contrast, the same reaction when attempted using a 1:1 mole ratio of AlCl3 to DMDS after 6 hours achieved only 66% conversion and a thioanisole yield of only 35%. So far as is known, this is the first example of a highly efficient electrophilic aromatic substitution of the inactivated benzene ring by an alkanethio group.
priorityDate 1997-05-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12232
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7947
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410511302
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559219
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID86611018
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458394811
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538050
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411325153
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24012
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7520
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419522661
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID138595
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410447715
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID241
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419547026
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419509889
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523826
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458394586
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546766
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7969
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456171974
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24409
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5256167

Total number of triples: 37.