http://rdf.ncbi.nlm.nih.gov/pubchem/patent/BR-102012009197-A2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_8257ad60ee47fd2d2c2213f1a704dfe2
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B25-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C22B26-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N1-20
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12R1-01
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B25-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N1-20
filingDate 2012-03-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_13531eeecb94e389bd668ebc601061d6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_57cc06ee5ce0a65804b598f9237b10e8
publicationDate 2013-06-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber BR-102012009197-A2
titleOfInvention adsorbing agent, bioflotting composition and apatite-quartz system bioflotting process
abstract BIOAdSorbent. Several microorganisms such as bacteria, fungi and / or their metabolic products have been used as bioreactors in mineral bioprocessing. A hydrophobic microorganism can change the hydrophilic characteristics of a mineral surface if it adheres to the mineral surface. This is the case of the bacteria Rhodoccocus opacus, with hydrophobic characteristics identified in previous research. In this work we study the electrophoretic behavior and microflotation of quartz - apatite mineral system (apatite "A" and apatite "B") after interaction with bacteria cells. The results showed a change in the zeta potential profile of mineral samples after interaction with the bacteria, this change was more significant in apatites than quartz. The results also showed that bacterial cell adhesion on the mineral surface can be through specific interactions as well as electrostatic interactions. It has been observed that the suspended bacteria can reduce the surface tension of the air / water interface from 70 mN / m to close to 54 mN / m, 55 mN / m and 56 mN / m for pH values of 3.5, and 7, pH range in which the highest foam production was observed. The maximum buoyancy value for all mineral samples was obtained at a pH around 5; apatite "B" achieved around 90% flotability using 0.15 g / L bacteria and 5 minutes of flotation, while apatite "A" needed 0.20 g / L bacteria to achieve the same recovery, finally in the case of quartz the value was close to 13% with 0.15 g / L bacteria and under the same working conditions. The adaptation of the bacteria to mineral substrate revealed a change in the behavior of the bacteria during the flotation process, a greater apatite flotability was observed at a pH value around 3 after adaptation to the apatite mineral. In the case of quartz, there was a slight increase in flotability at all pH values. Apatite and quartz bioflotation follows first-order kinetic models. The rate constants (K ~ 1 ~) of apatite flotation "A" were observed to decrease with particle size reductions, changing from 0.429 (min ^ -1 ^) to 0.198 (min ^ -1 ^) when size went from (106 - 150) one to (38 - 75) one, in the case of apatite "B" this reduction was from 0.518 (min ^ -1 ^) to 0.295 (min ^ -1 ^), the opposite was observed in the case of quartz increased from 0.016 min ^ -1 ^ to 0.11 min ^ -1 ^. Fundamental studies of electrophoretic mobility and flotability supported by scanning electron microscopy showed the selectivity of apatite and quartz separation and thus rectified the potential use of Rhodococcus opacus bacteria as bioreactor in mineral processing.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2018209416-A1
priorityDate 2012-03-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID876
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448670727
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID542269
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100533464
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID19601290
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID37919
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID120093082
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID439177
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1406
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1281
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10367
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451160908
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID413708962
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID180
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1406
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID5554
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10207414
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453448475
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1281
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448612525
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID876
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5234
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454421750
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419482702
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID19131
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8823
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415966228
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID2541750
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24846366
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID37919
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID192266

Total number of triples: 53.