http://rdf.ncbi.nlm.nih.gov/pubchem/patent/AU-2021105977-A4

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_7f2fcf28318a45b75662968d23cb1bf6
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61F2310-00179
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-0022
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L2430-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29K2105-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61F2002-2835
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61F2310-00161
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29K2105-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C04B2235-5248
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-53
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B33Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B33Y70-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B28B1-001
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-2886
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-288
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C64-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-297
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-298
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-397
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C04B35-447
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-05
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B33Y40-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-022
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-2883
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C04B35-80
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61F2-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29K105-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29K105-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C48-53
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C48-05
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B28B1-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B33Y70-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C48-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C04B35-447
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C48-285
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61L27-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C48-395
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B33Y40-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B33Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C04B35-80
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C64-20
filingDate 2021-08-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2021-10-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_bec8785aada6b88425ebe9fd0d872891
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_34043b92635067d2619778ac698210ae
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b97a025352106afff1c343cd90d55179
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_39895859791b3944f514b63c4d81d38a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4372cbbf4577f761e8ea47dae14d2d3f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_175da0aa6f8049d14b8ba3e88ecc51de
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_cfae788892d32a04b01b1de50b480693
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0c24d3596b6f196aa4717ff80231b213
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dbd7db93a71030d3605641e0c6d1f59f
publicationDate 2021-10-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber AU-2021105977-A4
titleOfInvention A 3D Printing Device For Bionic Bone Scaffolds Made of Porous Continuous Carbon Fibers Reinforced Ceramics
abstract of Descriptions nThe present invention discloses a 3D printing device for bionic bone scaffolds made of porous ncontinuous carbon fibers reinforced ceramics and its method. The device described in the present ninvention combines a pretreatment device of continuous fiber with a ceramic slurry extrusion device, nand thus, the integrated design of 3D printing device for bone scaffolds made of carbon fibers nreinforced ceramics can be accomplished. Furthermore, the fiber pretreatment material utilized in nthe method of the present invention is the ceramic slurry with the same base material and relatively nlow solid content. Wherein, the ceramic slurry with relatively low solid content has better nwettability, which can not only adhere to the external of the carbon fiber multifilament, but also npenetrate in the internal of carbon fiber multifilament, and thus the adhesive action can be naccomplished, and further it can improve the biological properties of the composite material.
priorityDate 2021-08-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID82764
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID753
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453715328
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426260389
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID263
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456987945
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24832095
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419483452
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962

Total number of triples: 69.