http://rdf.ncbi.nlm.nih.gov/pubchem/patent/AU-2021105226-A4

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d1603d93036aab7217d6e728c72e48b8
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L3-5027
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N35-00594
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-126
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F30-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06Q10-047
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01L3-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06Q10-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N35-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F30-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N3-12
filingDate 2021-08-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2021-10-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_14d8314a7c7dbd715c99a861baf8ce19
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_704ad718628bb4fda2bf426afa543845
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7ca9401739977639a2222bf968d25082
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2654c9099dc5b6bdc84bbd2553baf9c3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_42866cb682d36d4aeb76ac1eb2b3c596
publicationDate 2021-10-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber AU-2021105226-A4
titleOfInvention Optimization method for parallel online test of a digital microfluidic biochip
abstract The present invention relates to the field of chemical or physical analysis, and ndisclosed thereby is an optimization method for parallel online test of a digital nmicrofluidic biochip. The optimization method comprises: Si. converting a chip array n5 into a graph model required for test, and assigning tasks equally to a plurality of test ndroplets; S2. generating test paths for all test droplets and finding the longest path; S3. noptimizing the test path for each test droplet on the basis of a priority strategy and a ngenetic algorithm; S4. adaptively adjusting tasks for each test droplet according to the ntest performance of each droplet; S5. iterating S3 and S4 on a chip to optimize the no test paths until a preset number of iterations is reached and the final test path for each ntest droplet is obtained; and S6. running the final test path for each droplet in parallel. nA non-partitioning method is adopted to reduce the test path length and test costs nwhile avoiding fluid conflicts resulting from a plurality of droplets. In addition, equal nassignment of test tasks is improved, and the test efficiency is improved. n5nS1 nConverting a chip array into a graph model required for test, and assigning tasks equally to a nplurality of test droplets nS2 nGenerating test paths for all test droplets and finding the longest path nS3 nOptimizing the test path for each test droplet on the basis of a priority strategy and a genetic nalgorithm nS4 nAdaptively adjusting tasks for each test droplet according to the test performance of each ndroplet nS5 nIterating S3 and S4 on a chip to optimize the test paths until a preset number of iterations is nreached and the final test path for each test droplet is obtained nS6 nRunning the final test path for each droplet in parallel nFig. 6 n5/10
priorityDate 2021-08-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP21795
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416215951
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO33655
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3003791
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9HDX2

Total number of triples: 29.